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Quantum and classical statistics of the electromagnetic zero-point field
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A classical electromagnetic zero-point fi¢klPF) analog of the vacuum of quantum field theory has formed
the basis for theoretical investigations in the discipline known as random or stochastic electrodyS&bics
In SED the statistical character of quantum measurements is imitated by the introduction of a stochastic
classical background electromagnetic field. Random electromagnetic fluctuations are assumed to provide per-
turbations which can mimic certain quantum phenomena while retaining a purely classical basis, e.g., the
Casimir force, the van der Waals force, the Lamb shift, spontaneous emission, the rms radius of a quantum-
mechanical harmonic oscillator, and the radius of the Bohr atom. This classical ZPF is represented as a
homogeneous, isotropic ensemble of plane electromagnetic waves whose amplitude is exactly equivalent to an
excitation energy ohv/2 of the corresponding quantized harmonic oscillator, this being the state of zero
excitation of such an oscillator. There is thus no randomness in the classical electric-field amplitudes: Ran-
domness is introduced entirely in the phases of the waves, which are normally distributed. Averaging over the
random phases is assumed to be equivalent to taking the ground-state expectation values of the corresponding
quantum operator. We demonstrate that this is not precisely correct by examining the statistics of the classical
ZPF in contrast to that of the electromagnetic quantum vacuum. Starting with a general technique for the
calculation of classical probability distributions for quantum state operators, we derive the distribution for the
individual modes of the electric-field amplitude in the ground state as predicted by quantum field theory. We
carry out the same calculation for the classical ZPF analog, and show that the distributions are only in
approximate agreement, diverging as the densityk aftates decreases. We then introduce an alternative
classical ZPF with a different stochastic character, and demonstrate that it can exactly reproduce the statistics
of the electromagnetic vacuum of quantum electrodynaf@isD). Incorporating this field into SED, it is
shown that the full probability distribution for the amplitude of the ground state of a quantum-mechanical
harmonic oscillator can be derived within a classical framework. This should lead to the possibility of devel-
oping further successful correspondences between SED and [@ED50-294{©6)05710-1

PACS numbg(s): 03.65.Sq, 12.20.Ds

I. INTRODUCTION The primary emphasis of this research program has been to
determine to what extent classical physics plus a ZPF can
The research program known as random or stochastieproduce the results of quantum mechanics and quantum
electrodynamic¢SED) is clearly described in the classic re- electrodynamic$QED).
view article by Boyer[1] and in the recent monograph by  Several interesting classical reworkings of quantum prob-
Milonni [2]. SED is basically a modern extension of the lems have been published. For example, it has been shown
classical electron theory of Lorentz, and a follow-on to in-by Boyer[6] that the blackbody spectrum can be derived in
vestigations of Planck3], Nernst[4], and Einstein and Stern this fashion without recourse to quantum assumptions. Inher-
[5], but with a different choice of boundary conditions con- ent discontinuity in available energy states is not required in
sistent with relativity; the boundary conditions being dis-this approach, since the same net effect is produced on an
cussed in detail by Boydrl]. The uniform, homogeneous ideal oscillator by the random fluctuations of the ZPF. An-
zero-point field(ZPPF forming the basis of SED today has a other classical problem, the stability of the Bohr atom, simi-
Lorentz-invariant radiation spectrum, i.e., the energy densityarly has a different resolution from the perspective of SED.
scales ag(v)=1°. Planck’s constartt appears in the electro- A classically orbiting electron in the sense of the Rutherford
magnetic field strength, but only in the role of a scale factorplanetary model of 1913 would pick up energy from the ZPF
In the classical SED view, quantum fluctuations are equivaat a rate exactly balancing the radiative losses due to accel-
lent to electromagnetic ZPF perturbations, and thus therated motions of the charged electfdn7]. This balance
strength of the electromagnetic field must involvehow-  has been demonstrated only for the ground state of the Bohr
ever, whereas in the quantum vidwis a unit of quantiza- hydrogen atom.
tion, in the SED viewh is merely a measure of field strength.  As intriguing as these and other quantum rederivations
are, a fundamental objection to the overall approach of SED
is that, if the ZPF is regarded as a real electromagnetic field,
*Electronic address: mike@atman.princeton.edu it would have unacceptable gravitational consequences since
"Electronic address: haisch@sag.space.lockheed.com the energy density would presumably give rise to a physi-
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cally unrealistic cosmological constant. Recent SED studiesesulting in the classical probability distribution
address this problem and, building on a conjecture of Sa-

kharov[8], find a possible interpretation of gravitation and 1 1
inertia as themselves ZPF-mediated phenom¢®AQ], Pc(X)= v Y= 2
analogous to the view of ZPF-mediated quantum phenom- W(W— x2)

ena. Some support for the possibility of nongravitating
vacuum energy was recently proposed by D{itH. Never-
theless, SED concepts have met with justifiable skepticism
given the limitations of SEDvis-avis modern quantum
theory. We address one such limitation in this paper.

X’<A%2=0, x*>A? (3

where we make use of the energy relat®r :mw?A2.

While_ SED is suggestive of interesting physics, g_ive_n theN ew:sngsuaergtlljfr;ic?rl]tug;tlomnoltsiornatdg:r?gyu(islgg r?r?é' Isndgllg(;} of
res_ou_ndlng Success Of_ quantum theory as a predictive d%'quation for the same potential. One now finds discrete en-
scription of nature, it will be necessary to demonstrate a fa rgy levels
more detailed correspondence of SED with quantum fiel
theory (QFT). Indeed, we have identified a discrepancy be- E,=(n+Y%o. (4)
tween SED as presently formulated and QFT in that the ZPF
is assumed to consist of electromagnetic fields that are pefFhe probability distribution for an oscillator in theth ex-
fectly random in phase but with a known amplitude, whichcited state is
differs from the distribution for the individual modes of the
electric field amplitude in the ground state as predicted by a
QFT. We introduce an alternative classical ZPF with a dif- Pa(X) = ——=_— Ha(ax)exp — a®x?), ®)
ferent stochastic character, and demonstrate that it exactly Jm2™!
reproduces the statistics of the electromagnetic vacuum %hereH (ax) are the Hermite polynomials, and the scale
QFT. Incorporating this field into SED, it will be shown that factor a ins poly '
the full probability distribution for the amplitude of the
ground state of a quantum-mechanical harmonic oscillator (mw)l’z

a=

can be derived within a classical framework.
Our approach is as follows. In Sec. Il we present an el-
ementary illustration of the problem under consideration. In

Sec. lll first introd tation leading to a defini- . >
ec. 1 we Tirst INToduce some Noraton feading fo a getini and compareg,(X) to the classical probabilitp.(x). The

tion of an equivalent classical probability distribution for a . )
quantum state operator. Then we derive the ground-stat%mp“tl"deA of the latter has been set to unity and we let

probability distributions for the full electric field and a single
mode of the electric field consistent with QFT. In Sec. IV

SED distributions for each of these are computed and oM nich results ine=5 for n=12. These classical vs quantum
pared with those of QFT. In Sec. V the computation andy oty distributions are illustrated in Fig(d. Classi-

comparison is_ _repeated _using our modi_fied_ SED. We the ally, the mass spends more time near the extrema of the
apply the modified SED field to a determination of the prOb'oscillation, where the velocity approaches zero, than at the

center where the velocity is maximal. For this degree of ex-

- ®)

For illustration we choose a quantum state excited+dl2,

E,=imw’=(n+1Hio, (7)

ability distribution for the position of a classical harmonic
oscillator, and compare with the standard quantum-

hanical it d . ) hcitation, the quantum probability distribution oscillates
mechanical result, demonstrating precise agreement. Thig, nq the classical distribution, and begins to approximate
modification of the standard SED approach should clear th

. ft in the mean.
way for further development of correspondences with QED. o guantum zero-point state probability distribution is
described by Eq(5) with n=0, but in this case the expres-
Il. CLASSICAL VS QUANTUM sion may be simplified to

SIMPLE HARMONIC OSCILLATOR
Mw

1/2
The discrepancy between SED and QED that we seek to Po(X) = (_h) exp(—mox?/h). (8
address can be illustrated by examining a simple harmonic &

osqllator_(cf. Davies and Bett$12]). For a massm, Ona  The classical distribution, meanwhile, remains the same on
spring with force constark, Fhe frequency of oscillation rescaling the axis. The two distributions are shown together
will be @=yK/m and the positiorx(t) can be expressed as Fig. 1(b). They differ radically.
) Any single mode of oscillation of the electromagnetic
x(t)=A sin(wt+¢), (1) field will have analogous behavior to this simple harmonic
oscillator. In Sec. Il we investigate the probability distribu-
whereA is the amplitude. The probability of finding the mass tion for the zero-point field of quantum field theory, and
within an intervaldx at positionx is p(x)dx, and this is  show that it has the form of E¢8). In Sec. IV we verify that
equal to the fraction of timelt that is spent in that interval the Boyer classical representation of a Sing|e mode of the
over half a period. From Ed1) we readily determine that  zero-point field has the form of Eg3), which is to be ex-
pected of a classical wave of definite amplitu@ed there-
dx=wA cog wt+ ¢)dt=wJA%—x?dt, (2)  fore energy but with an indefinite phase.
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whereM is the dimensionality of. To determinep,(r) it is
convenient to go via a generating functigiis) say, which is

a transform ofp,(r), and which can be computed directly
from Eq. (9) if f(r)=f(r;s) is identified with the transform
kernel. Choosing the Fourier transform

f(r;s)=exp(—is-r), (10

i | -

3 9(s) =(lexp(—is-1)|y).

- ]

% V V V Once the generating function has been computed from Eq.
5 * (112, the inverse transform then gives the required distribu-
z tion

2

2 p¢,(r)=(27-r)*'\"f dMs g(s)expis-r). (12)

E

In this paper we are interested exclusively in the ground state
of the electromagneti¢EM) field |)=|0), the distribution
for which we denote simply bypq(r)=p(r).

B. Probability distribution for the total field

The electric-field operator can be expanded in the photon
number representatidri 4]

2
- ) hw

Distance 1/2

[af \exp(—ik-r +iot)

FIG. 1. Classical vs quantum probability distributioia). The
probability of a classical oscillator is a smooth function with R . .
maxima at+ A, whereA is the amplitude. The corresponding quan- —ag \expik-r—iwt)], (13
tum oscillator approaches this in the mean for large values; of . .
shown is the probability distribution for=12 (top). (b) The quan-  Where w=ck, &, is a unit vector, and\ labels the two
tum zero-point (=0) probability state, on the other hand, is radi- directions mutually orthogonal and orthogonal to the mo-
cally different from the classical distribution; the quantum state hagne€ntumk. Thus, if each of the three Cartesian components
a maximum where the classical distribution is minim(nottom. of k can takeN values, then the dimensionality of the rep-

resentation space isNb In the following, unless\ appears

explicitly, sums and products involvirig should be taken to

include\. In this paper we restrict our attention to the trans-

verse components of the electric field, though the corre-

A. Classical probability distributions sponding results for the magnetic field easily follow. Since
for quantum state operators all cavity modes are independent, the state of the total field

can be written as the product of the individual modek

14], Sec. 4.5. Specifically for the ground state we may thus

rite

Ill. QUANTUM FIELD THEORY
FOR THE ZERO-POINT FIELD

We begin with an investigation of the precise correspon
dence between the statistics of the quantized radiation fiel
where the electric and magnetic fields are operators, and the
statistics of a classical electromagnetic field consisting of
plane waves forming the basis of the SED approach. To this |0>51;[ |0)- (14
end we consider the relationship between a classical prob-

a.b|||ty diStI’ibutiOﬂ and the eXpeCtation Of an arbitral’}/ fUnC' We Seek to re'ate a probab"'ty distribution for some func-
tion of a quantum operatdcf. Dirac[13]). Let us defing to  tion of the electric field regarded as a classical ensemble of
be some vector operator on a stag so that the expectation waves to the measurement of that same function of the elec-
value of some functiorf (f) is (y{f (F)|4). Provided that the tric field regarded as a quantum operator; thus, writing
components of the vectar commute with one another, we E=(E, ,Ey,E,), and noting that the polarization components
may then associate with the particular statea probability = commute, a distributiop(E) is sought, such that, with ref-
distribution (of a ¢ numberr) p,(r), say. The defining rela- erence to Eq(9), for an arbitrary functiorf,

tion for this classical probability distribution is that the ex-
pectation value of an arbitrary function must be the same as
that computed from quantum theory:

<o|f(|§)|o>=dexf dEyf dE,p(E)f(E). (15

r With reference to Eq(11), the corresponding generatin
<w|f(r>|z/f>=f d™r py(nf(r), 9 function is a1 ponding g g
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9(s)=(Olexp( ~is-E)[0). (16
If g(s) can be calculated, then its Fourier invef&s. (12)]
givesp(E).

Substitution of Eq(13) into the above permits the gener-
ating function to be written as a product:

f
g(s)=1;[ <0k ex;{ - sk(

280V

1/2

3 .
[afexp(—ik-r+iwt)

—aexplik-r—iwt)] 0k>. (17)
Let us define a complex humbey,
ay=—=5 SkUkeXF(_ik'r+iwt), (18)
where
” hw 19
Uk 280V ( )
Equation(17) can now be written as
9(9)=11 (Odexpedi—ai@|0y). (20

We now recognize a connection between E2f)) and the
coherent photon statéy,) say. This can be written in terms
of an operation on the ground stdtd. [14], Sec. 4.1D

|C¥k>:eXFiCl{kéE_Clh’kc ék)|0k>! (21)
which permits Eq(17) to be written
9(9=1I1 (0. (22

However, the basis states for the coherent state are well

known:

an

=exp(—|al?/2 : 23
|@)=exp(—|al?12) 2 N (23
This allows us to arrive immediately at
g(s)=exp<—2 |ak|2/2). (24)
K

If the space is unbounded, then the sum dven Eq. (24)
can be replaced:

2
\
2
; = Gl Jodw ® gl J dQ, (25
(cf. [14], Sec. 1.1, noting the integration overr 4olid angle

and summation over both polarization statemd the inte-
gral over orientations can be performed:

87s?

3

2
> f dQ (s &) %= (26)
A=1
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Substitution of Eqs(25) and(26) into Eq. (24) gives
g(s)=exp(—s?0E/2), (27)
where
fifdo o
2_
S (28)

Finally, performing the Fourier inverse prescribed by Eq.
(12) gives
P(E(r,1)=(2mod) S%exd —E%(r,t)l202], (29
where it has been made explicit that this is the distribution
for the total field at any point irfr,t). Thus the probability
distribution for an unbounded zero-point field is isotropic
and normal with zero mean. In the absence of a cutoff fre-
quency the variance is infinite, and therefore the distribution
is effectively flat, each component of the polarization vector
having an amplitude that is equally likely to take any value.

C. Zero-point energy of the quantum field

The following is a brief example of how a quantum-
mechanical expectation value can be replaced by a classical
average. The expected value for the zero-point energy, as-
suming equal contributions from the electric- and magnetic-
field components, is

&,p=60V(0|E-E|0). (30)
According to Eq.(15), this may now be replaced by
gzpzsovf dEXf dEyf dE,p(E)E?. (31)

Using the result Eq(29), and performing the integrals, one
obtains

Vh[dw o3

— 2 _
gzp_ 380V0E—W y

(32

which gives an energy densiger radian frequency, per unit
volume

fiw®
plw)= 3253 (33
which is the requiredQFT) density corresponding to aver-
age energyo per normal mode.

D. Probability distribution of a single mode

A distribution for the amplitude of each normal mode can
be obtained by decomposing the electric-field operator into a
sum of commuting normal-mode operators

E:Z Skék. (34)
k
Following the same procedure as for the full field, it is

straightforward to show that each normal-mode amplitude is
itself normally distributed:
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1 - 2 . heo |12
P(Ey) = Wexq—Ek/ZUk), (35) E(r,t)=Re§l a3k £, 8se
Xexplik-r—iot+if,). (41)

where gy is as defined in E¢(19). This distribution for the
amplitude of the electromagnetic field modes is identical to
that of the quantum mechanical simple harmonic oscillator B. Distribution for the total field

. . . ; 2: .
of Eq. (8) as illustrated in Fig. () (for zMaw" =z,V). In this A requirement of the classical stochastic field is that it

case, as the space becomes unbounded, the variance becomes L L
vanishingly small, and the distribution approaches fanc- have the same distribution as the QFT zero-point field. The

tion centered on an amplitude value of zero. However thé;enerating function for the distribution is defined in the nor-
ZPF energy in each modé, say, remains finite and ind,e- mal way, but now the expectation value implies an averaging

pendent of the geometry, over the phases:

1 27
(s)=(exp—is-E) =H {— dé
5k=80vf dEp(E)EZ= 3w, (36) 9(s)=(ext ) e |27 Jo K
as required. xexf] —i20ys gcogk -1 —wt+ )]
IV. BOYER’'S CLASSICAL STOCHASTIC :H {30 \/EO’kS' &), (42)
ZERO-POINT FIELD K

A. Introduction L. . .
which is just the generating function for the sum of a set of

The question we seek to address is whether it is possibldependent classical harmonic oscillators. In the limit that
to substitute a classical electromagnetic field with some stog, is small (the volume is large the Bessel functions are
chastic behavior for the ZerO'pOint field of QFT. Such a fi8|da|ways positive’ and it is safe to write
would be expected to correctly predict effects attributed to
the zero-point field, including spontaneous emission, van der
Waals forces, the Lamb shift, and Casimir forces. Boyer's g(s):exp<2 INBo(V20s ) |- (43
suggestiori1] is a classical field which is a sum of Fourier k
components of definite amplitude, but random phase. Aver-
aging over the phases then replaces the procedure of takifighe generating function for the QFT distribution, Eg4),
the ground-state expectation value of an operator involvingan be reproduced if only the first two terms are retained in

the electromagnetic field. the power-series expansion of the Bessel function, and pro-
To be consistent with the notation of this paper, we writevided one can then set In¢1x)~x for each term in the sum,
the Boyer field as whereupon
E(r,t):ﬁ}k‘, £,.0,c08K-T— wt+ 6,), (37 g(s)%exp(_; ar2). (4

mt[%tg:]?k independent and subject to a constant dlsmbuuonwhereak is defined in Eq(18). The above result is valid in

the limit that the volume is infinite, because the sum dwver
. n B supplies a volume which cancels with thatdp. It follows
(expli O \ =10k \))= Sk - (38 that higher-order termsi>1) in the expansion of the Bessel
o ] . ] ~and In functions must have dependencies on the volume
That this is equivalent to the Boyer field of earlier publica-\yhich go asv!™". Therefore, when the volume is bounded
tions can be shown by converting the sum to an integrafiy any dimension, such as for example by a Casimir cavity
(valid when the space is unboundedhich, from Eq.(25),  then this classical distribution will differ from the QFT dis-
1S tribution. (Note that within the QFT framework the generat-
) ing function Eq.(24) is exact, regardless of the volume of the
Vv space supporting the field modes.
— | &%k, , 39
S -~ L2, (39
C. Distribution for a single mode
and at the same time redefining the random variables so that The disagreement between QFT and the Boyer field is
. _ more acute for a single mode. The QFT result is twath
(expli O =10, \))=(K—K") S\ \+ (400 modeis independently normally distributed. The Boyer field
components are also independent, but instead have the dis-
Applying Eqg. (39) to Eq. (37) gives the expression used in tribution of a classical harmonic oscillator, i.e., each compo-
Boyer[1] (but in mks unit$: nent of the expansion
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of this field has the same distribution as the modes of the
E=§k: ecEx (45 QFT zero-point field, it follows that the distributions for the
full fields also agree. The conclusion is that the field defined
has the distribution given in Eq3), which in the notation of N EQ. (47) is the correct classical analog of the QFT zero-
this section is point field.

C. Harmonic oscillator driven by a stochastic field

P(EY=—>—=. Ei=o% . . _
m\o—Eg . Stochastic electrodynamics attempts to use a stochastic
=0, EZ>of but otherwise classical field to predict the motion of charged

46) particles as given by quantum theory. A recent success has
Comparison with the QFT result E(5) will show tha% the been the prediction of the correegtns) radius for the ground
first and second moments are the same, but beyond that tis¢ate of the Bohr atom by interpreting the Boyer field as a
distributions diverge widely. The conclusion is that a classi-forcing term on a classical harmonic oscillafdr,7]: That
cal field with a random phase does not accurately reproducanalysis is extended here using the alternative classical zero-
the statistics of a QFT field operator on the ground state. point field presented above to determine the full probability
distribution for the oscillator coordinate.
V. MODIFIED CLASSICAL ZERO-POINT Using the notation of Puthoff7], the equation of motion
FIELD for a classical electron oscillator driven by the zero-point
field, including radiation damping, is
A. Introduction L,
An alternative to the Boyer field is the following: q+vq-I'q=I"E, (52)
) . whereq=q(t) is the oscillator coordinate; is the natural
E(r.t)= Re; g Wiexplik-r—iot) (47)  frequency of the oscillator, and the damping and driving co-
efficients are
where w,=u,+iv,, andu, andv, are real, independent,
normally distributed random variables, having zero mean I'=e’/6rsomec®, I''=e/m,. (53
and unit variance. This field can alternatively be written
Implicit in Eq. (52) is that the velocities are nonrelativistic,
whence the field can be treated as if acting at a constant
point, which for convenience is taken to be at0. Using the
Fourier transforms of the coordinate and the field, &%)
where 6, has a constant distribution i0,27], andl, has can be written

E(r,t)= ﬁ; gVl cogk-r—ot+6,), (49

distribution
a(v)=h(v)E(v),
p(lk):exq_lk)a IkE[O,m], (49) (54)
i.e., the intensity of each mode is exponentially distributed. h(v)= 2—,
Comparison of Eq(48) with Eq. (37) indicates that one may vo— P +ilv?

regard this field as differing from the Boyer field by the

introduction of a stochastic element for the amplitude of eaci’he Fourier transform of the field given by E@L7) (sup-
mode.(The stochastic nature of this field can be viewed as ampressing the argument=0) is

implementation of the Box-Muller method for generating

normally distributed random deviates from a pair of uni- )

formly distributed random deviates, ¢fL5].) E(v)= Tr; orel 8w+ v) (U tivy)

B. Distribution of a single mode +o(w=v)(U—ivy)]. (59

Expanding the field as in Eq37) it is seen that the am-
plitude E,, of each mode is a linear combination of two in-
dependent zero mean unit normal deviates:

Substitution of Eq(55) into the Fourier inverse afi(v) [as
given in Eq.(54)] gives

Ex= o [ucogk-r—wt)—v,sink-r—wt)]. (50 q(t):J' dv exp(i vt)h(v)E(v)/2m

It follows thatE, is itself normally distributed with variance

(E2)= oZ{ud)cod(k-1 — ot) + (v)sir(k-1— wt) ] = o, =2 ey Rewd™ ()},
(51 (56)
from which follows the required result that each component h(w)=expiwt)h(w).

is distributed in accord with E¢35). Since the stochastic
variables are defined to be independent, and since each modlbe generating function for the distribution is
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. 1 q2+q2
9(9=(exp(~is @) =]] {5 f dukf dvyeex — ug/2 p(qx,qy):(zmg)—lexp< -z | (63
q
—vi/Z—iS-ekak(ukRe[F(w)}+vklm{’ﬁ(w)})]] from which the Bohr radius is predicted to be
(ry)=(a;+aj)=205= (64)

=1;[ exp( —|s- exokh(w)|4/2). (57) Mevo'’
which is the required result according to quantum theory. No
attempt is made here to replicate the quantum-mechanical
This result is exact: no approximation based upon the geonistribution of the radius for an atom in the ground state
etry of the bounding space, and therefore the mode densitfecause the correspondence between the classical and quan-
has been made thus far. The generating function, and ther&4m models is incomplete. A fuller treatment requires first a
fore the distribution of the oscillator coordinate, can in prin-solution for the equation of motion for the position of a
ciple be computed from the above for any set of modes asclassical electron in a 47 force field, including radiation
sociated with a given (finite) geometry. Stochastic damping and the force from a stochastic zero-point field.
electrodynamics therefore predicts a dependency of the os-
cillator amplitude on the geometry of the space supporting
the zero-point field(It has not yet been shown if this depen-

dency agrees with that of a quantum-theoretical model which VI. DISCUSSION
takes into account the reflective properties of the confining o o
walls on the harmonic potential. Second quantization of the electromagnetic field leads to a

In an unbounded space the product may be converted infystem of Schidinger-type equations for the QFT wave

an integral of the exponent, as in the earlier analysis. Usindinction in a space whose coordinates are the amplitudes of
Egs.(25) and(26), one thereby obtains the Fourier expansion of the vector potential. The potential

experienced by this wave function is the energy associated
with the amplitudes of the Fourier modes; i.e., is propor-
. (58 tional to the square of the amplitude. Thus each mode con-
tributes a one-degree-of-freedom harmonic oscillator to the
dynamics. It follows that the QFT wave function for a single
Using the resonance approximatipfl, the integral is found mode is in general a superposition of the Hermite-Gauss

s°h w . )
g(s)=ex —m fo do w |h(w)|

to be functions of the Fourier amplitude, the ground state of which
is just the Gaussian. Therefore the probability density for the

% 5 ) m(I'")? 3mcie, amplitude of a mode when the system is in the ground state

Jo do o’[h(w)|*~ 2T vg = Mevo (59 is also a Gaussian. It is not surprising therefore that the

ground-stateslectric-fieldamplitude is also normally distrib-
, , i , uted, as shown in Sec. Ill.
Inserting this result into E58) gives In Sec. IV the Boyer field was shown to replicate the
distribution of the total field only by virtue of the mean value
9(s) =exp —s%03/2) (600 theorem. The individual modes are not normally distributed,
but conspire to give a normal distribution to the amplitude of
where the full field in the limit of an infinite density ok states. The
deployment of the Boyer field as the SED driving force in a
3 classical harmonic oscillator succeeds in reproducing the
Ué:Zm o (61  correct rms amplitude provided the linewidth in Egs.(52)
e”0 and(53)] is sufficiently broad—i.e., provided there are a suf-
) S ) ) ~ ficient number of field modes within the bandwidth centered
from which the distribution for the oscillator coordinate is g, the resonant frequency of the oscillator.
The modified stochastic character of the field introduced
p(a)=(27a3)  ¥2exp(—g%/207). (62)  in Sec. V does not suffer from this limitation. Rather, it has
been shown that a classical EM field with a suitable stochas-

This distribution agrees with that predicted by quantum melic behavior not only reproduces the statistics of the zero-

chanics for the nonrelativistic harmonic oscillator in the point field of quantum field theory, but also imposes the
ground state. correct—quantum-mechanical—distribution upoolassical

harmonic oscillator embedded in such a field. However, the
aim of this paper is not to simply provide a more accurate
classical analog for the zero-point field. Rather, we wish to

The Bohr atom(ground statecan be considered as a pair draw attention to the connection between the probability dis-
of one-dimensional harmonic oscillatdrg,7], oscillating in  tributions of the stochastic variables in the classical field, and
qguadrature in a plane. Confining the distribution E&R) to  those of the Fourier amplitudes of the second-quantized field
two dimensions gives theory. It is evident that in order to accurately reproduce

D. Correspondence with the Bohr atom
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